{"id":72087,"date":"2017-12-28T02:53:28","date_gmt":"2017-12-28T02:53:28","guid":{"rendered":"https:\/\/www.mpofibercable.com\/?page_id=72087"},"modified":"2021-11-05T00:29:31","modified_gmt":"2021-11-05T00:29:31","slug":"100g-qsfp28-sr4","status":"publish","type":"page","link":"https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html","title":{"rendered":"100G QSFP28 SR4"},"content":{"rendered":"

[vc_row type=”container” padding_top=”” padding_bottom=”” css=”.vc_custom_1445094705330{margin-bottom: 0px !important;}”][vc_column width=”1\/2″ css=”.vc_custom_1444994576899{margin-bottom: 35px !important;}”][vc_column_text]The 100G-QSFP28-SR4 is a Four-Channel, Pluggable, Parallel, Fiber-Optic QSFP28 Transceiver for IEEE 802.3bm, 100GBASE SR4 Applications,or 40 Gigabit Ethernet and Infiniband FDR\/EDR Applications. The QSFP28 full-duplex optical module offers 4 independent transmit and receive channels, each capable of 26Gbps operation for an aggregate data rate of 104Gbps 70m using OM3 fiber. These 100G-QSFP28-SR4 are designed to operate over multimode fiber systems using 850nm VCSEL laser array. An 11 optical fiber ribbon cable with an MPO\/MTPTM connector can be plugged into the QSFP module receptacle. QSFP28 SR4 is one kind of parallel transceiver which provides increased port density and total system cost savings.[\/vc_column_text][\/vc_column][vc_column width=”1\/2″ css=”.vc_custom_1444994585214{margin-bottom: 35px !important;}”][vc_single_image image=”71905″ img_size=”full” add_caption=”yes”][\/vc_column][\/vc_row][vc_row type=”container” padding_top=”” padding_bottom=””][vc_column][vc_column_text]100G-QSFP28-SR4 Features
\nFour-channel full-duplex transceiver modules
\nTransmission data rate up to 26Gbit\/s per channel
\nUp to 70m on OM3 Multimode Fiber (MMF)and 100m on OM4 MMF
\nLow power consumption <3.5W
\nOperating case temperature 0\u00b0C to +70\u00b0C
\n3.3V power supply voltage
\nRoHS 6 compliant
\nHot Pluggable QSFP form factor
\nMPO connector receptacle
\nBuilt-in digital diagnostic function<\/p>\n

100G-QSFP28-SR4 Applications
\nIEEE 802.3bm 100GBASE SR4 and 40GBASE SR4
\nProprietary High Speed Interconnections
\nData center[\/vc_column_text][vc_column_text]Absolute Maximum Ratings
\nThe operation in excess of any absolute maximum ratings might cause permanent damage to this module.<\/p>\n\n\n\n\n\n\n\n\n
Parameter<\/td>\nSymbol<\/td>\nMin<\/td>\nMax<\/td>\nUnit<\/td>\nNote<\/td>\n<\/tr>\n
Storage Temperature<\/td>\nTST<\/td>\n-40<\/td>\n85<\/td>\ndegC<\/td>\n<\/td>\n<\/tr>\n
Relative Humidity(non-condensing)<\/td>\nRH<\/td>\n0<\/td>\n85<\/td>\n%<\/td>\n<\/td>\n<\/tr>\n
Operating Case Temperature<\/td>\nTOPC<\/td>\n0<\/td>\n70<\/td>\ndegC<\/td>\n<\/td>\n<\/tr>\n
Supply Voltage<\/td>\nVCC<\/td>\n-0.3<\/td>\n3.6<\/td>\nV<\/td>\n<\/td>\n<\/tr>\n
Input Voltage<\/td>\nVin<\/td>\n-0.3<\/td>\nVcc+0.3<\/td>\nV<\/td>\n<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

Recommended Operating Conditions and Supply Requirements<\/p>\n\n\n\n\n\n\n\n\n\n
Parameter<\/td>\nSymbol<\/td>\nMin<\/td>\nTypical<\/td>\nMax<\/td>\nUnit<\/td>\n<\/tr>\n
Operating Case Temperature<\/td>\nTOPC<\/td>\n0<\/td>\n<\/td>\n70<\/td>\ndegC<\/td>\n<\/tr>\n
Power Supply Voltage<\/td>\nVCC<\/td>\n3.13<\/td>\n3.3<\/td>\n3.47<\/td>\nV<\/td>\n<\/tr>\n
Power Consumption<\/td>\n<\/td>\n–<\/td>\n<\/td>\n3.5<\/td>\nW<\/td>\n<\/tr>\n
Data Rate<\/td>\nDR<\/td>\n<\/td>\n25.78125<\/td>\n<\/td>\nGbps<\/td>\n<\/tr>\n
Data Speed Tolerance<\/td>\n\u2206DR<\/td>\n-100<\/td>\n<\/td>\n+100<\/td>\nppm<\/td>\n<\/tr>\n
Link Distance with OM3 fiber<\/td>\nD<\/td>\n0<\/td>\n<\/td>\n70<\/td>\nm<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

Optical Characteristics
\nAll parameters are specified under the recommended operating conditions with PRBS31 data pattern unless otherwise specified.<\/p>\n\n\n\n\n\n\n\n\n\n
Parameter<\/td>\nSymbol<\/td>\nMin<\/td>\nTypical<\/td>\nMax<\/td>\nUnit<\/td>\nNotes<\/td>\n<\/tr>\n
<\/td>\nTransmitter<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/tr>\n
Center Wavelength<\/td>\n\u03bbC<\/td>\n840<\/td>\n<\/td>\n850<\/td>\n860<\/td>\nnm<\/td>\n1<\/td>\n<\/tr>\n
RMS Spectral Width<\/td>\n\u03bbrms<\/td>\n–<\/td>\n<\/td>\n<\/td>\n0.65<\/td>\nnm<\/td>\n1<\/td>\n<\/tr>\n
Average Launch Power, each lane<\/td>\nPAVG<\/td>\n-7<\/td>\n<\/td>\n-2.5<\/td>\n0<\/td>\ndBm<\/td>\n<\/td>\n<\/tr>\n
Optical Modulation Amplitude<\/td>\nPOMA<\/td>\n-5<\/td>\n<\/td>\n-2.5<\/td>\n0<\/td>\ndBm<\/td>\n1<\/td>\n<\/tr>\n
<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

2<\/p>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
(OMA)<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/tr>\n
Difference in Launch Power between any two lanes<\/td>\nPtx,diff<\/td>\n<\/td>\n<\/td>\n4.0<\/td>\ndB<\/td>\n<\/td>\n<\/tr>\n
Launch Power in OMA minus<\/p>\n

Transmitter and Dispersion<\/p>\n

Penalty (TDP), each Lane<\/td>\n

OMA-TDP<\/td>\n<\/td>\n<\/td>\n3.5<\/td>\ndB<\/td>\n1<\/td>\n<\/tr>\n
Extinction Ratio<\/td>\nER<\/td>\n3.5<\/td>\n<\/td>\n<\/td>\ndB<\/td>\n<\/td>\n<\/tr>\n
Transmitter Eye Mask Margin<\/td>\nEMM<\/td>\n10<\/td>\n<\/td>\n<\/td>\n%<\/td>\n2<\/td>\n<\/tr>\n
Average Launch Power OFF<\/p>\n

Transmitter, each Lane<\/td>\n

Poff<\/td>\n<\/td>\n<\/td>\n-30<\/td>\ndBm<\/td>\n<\/td>\n<\/tr>\n
Transmitter Eye Mask<\/p>\n

Definition {X1, X2, X3, Y1, Y2,<\/p>\n

Y3}<\/td>\n

{0.3, 0.38, 0.45, 0.35, 0.41, 0.5}<\/td>\n<\/td>\n<\/tr>\n
Parameter<\/td>\nSymbol<\/td>\nMin<\/td>\nTypical<\/td>\nMax<\/td>\nUnit<\/td>\nNotes<\/td>\n<\/tr>\n
Receiver<\/td>\n<\/td>\n<\/tr>\n
Center Wavelength<\/td>\n\u03bbC<\/td>\n840<\/td>\n850<\/td>\n860<\/td>\nnm<\/td>\n<\/td>\n<\/tr>\n
Damage Threshold<\/td>\nTHd<\/td>\n+3<\/td>\n<\/td>\n<\/td>\ndBm<\/td>\n<\/td>\n<\/tr>\n
Overload, each lane<\/td>\nOVL<\/td>\n+2.4<\/td>\n<\/td>\n<\/td>\ndBm<\/td>\n<\/td>\n<\/tr>\n
Receiver Sensitivity in OMA, each Lane<\/td>\nSEN<\/td>\n<\/td>\n<\/td>\n-10.3<\/td>\ndBm<\/td>\n<\/td>\n<\/tr>\n
Signal Loss Assert Threshold<\/td>\nLOSA<\/td>\n-30<\/td>\n<\/td>\n<\/td>\ndBm<\/td>\n<\/td>\n<\/tr>\n
Signal Loss Deassert Threshold<\/td>\nLOSD<\/td>\n<\/td>\n<\/td>\n-9<\/td>\ndBm<\/td>\n<\/td>\n<\/tr>\n
LOS Hysteresis<\/td>\nLOSH<\/td>\n0.5<\/td>\n<\/td>\n6<\/td>\ndB<\/td>\n<\/td>\n<\/tr>\n
Optical Return Loss<\/td>\nORL<\/td>\n<\/td>\n<\/td>\n-12<\/td>\ndBm<\/td>\n<\/td>\n<\/tr>\n
<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

Notes:<\/p>\n

    \n
  1. Transmitter wavelength, RMS spectral width and power need to meet the OMA minus TDP specs to guarantee link performance.<\/li>\n
  2. The eye diagram is tested with 1000 waveform.<\/li>\n<\/ol>\n

    Electrical Specifications<\/p>\n\n\n\n\n
    Parameter<\/td>\nSymbol<\/td>\nMin<\/td>\nTypical<\/td>\nMax<\/td>\nUnit<\/td>\n<\/tr>\n
    Differential input impedance<\/td>\nZin<\/td>\n90<\/td>\n100<\/td>\n110<\/td>\nohm<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

    3<\/p>\n\n\n\n\n\n\n\n\n\n\n
    Differential Output impedance<\/td>\nZout<\/td>\n90<\/td>\n100<\/td>\n110<\/td>\nohm<\/td>\n<\/tr>\n
    Differential input voltage amplitude<\/td>\n\u0394Vin<\/td>\n300<\/td>\n<\/td>\n1100<\/td>\nmVp-p<\/td>\n<\/tr>\n
    Differential output voltage amplitude<\/td>\n\u0394Vout<\/td>\n500<\/td>\n<\/td>\n800<\/td>\nmVp-p<\/td>\n<\/tr>\n
    Bit Error Rate<\/td>\nBR<\/td>\n<\/td>\n<\/td>\nE-12<\/td>\n<\/tr>\n
    Input Logic Level High<\/td>\nVIH<\/td>\n2.0<\/td>\n<\/td>\nVCC<\/td>\nV<\/td>\n<\/tr>\n
    Input Logic Level Low<\/td>\nVIL<\/td>\n0<\/td>\n<\/td>\n0.8<\/td>\nV<\/td>\n<\/tr>\n
    Output Logic Level High<\/td>\nVOH<\/td>\nVCC-0.5<\/td>\n<\/td>\nVCC<\/td>\nV<\/td>\n<\/tr>\n
    Output Logic Level Low<\/td>\nVOL<\/td>\n0<\/td>\n<\/td>\n0.4<\/td>\nV<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

    Pin Descriptions<\/p>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
    PIN<\/td>\nLogic<\/td>\nSymbol<\/td>\nName\/Description<\/td>\nNote<\/td>\n<\/tr>\n
    1<\/td>\n<\/td>\nGND<\/td>\nGround<\/td>\n1<\/td>\n<\/tr>\n
    2<\/td>\nCML-I<\/td>\nTx2n<\/td>\nTransmitter Inverted Data Input<\/td>\n<\/td>\n<\/tr>\n
    3<\/td>\nCML-I<\/td>\nTx2p<\/td>\nTransmitter Non-Inverted Data output<\/td>\n<\/td>\n<\/tr>\n
    4<\/td>\n<\/td>\nGND<\/td>\nGround<\/td>\n1<\/td>\n<\/tr>\n
    5<\/td>\nCML-I<\/td>\nTx4n<\/td>\nTransmitter Inverted Data Input<\/td>\n<\/td>\n<\/tr>\n
    6<\/td>\nCML-I<\/td>\nTx4p<\/td>\nTransmitter Non-Inverted Data output<\/td>\n<\/td>\n<\/tr>\n
    7<\/td>\n<\/td>\nGND<\/td>\nGround<\/td>\n1<\/td>\n<\/tr>\n
    8<\/td>\nLVTLL-I<\/td>\nModSelL<\/td>\nModule Select<\/td>\n<\/td>\n<\/tr>\n
    9<\/td>\nLVTLL-I<\/td>\nResetL<\/td>\nModule Reset<\/td>\n<\/td>\n<\/tr>\n
    10<\/td>\n<\/td>\nVccRx<\/td>\n\ufe623.3V Power Supply Receiver<\/td>\n2<\/td>\n<\/tr>\n
    11<\/td>\nLVCMOS-I\/O<\/td>\nSCL<\/td>\n2-Wire Serial Interface Clock<\/td>\n<\/td>\n<\/tr>\n
    12<\/td>\nLVCMOS-I\/O<\/td>\nSDA<\/td>\n2-Wire Serial Interface Data<\/td>\n<\/td>\n<\/tr>\n
    13<\/td>\n<\/td>\nGND<\/td>\nGround<\/td>\n<\/td>\n<\/tr>\n
    14<\/td>\nCML-O<\/td>\nRx3p<\/td>\nReceiver Non-Inverted Data Output<\/td>\n<\/td>\n<\/tr>\n
    15<\/td>\nCML-O<\/td>\nRx3n<\/td>\nReceiver Inverted Data Output<\/td>\n<\/td>\n<\/tr>\n
    16<\/td>\n<\/td>\nGND<\/td>\nGround<\/td>\n1<\/td>\n<\/tr>\n
    17<\/td>\nCML-O<\/td>\nRx1p<\/td>\nReceiver Non-Inverted Data Output<\/td>\n<\/td>\n<\/tr>\n
    18<\/td>\nCML-O<\/td>\nRx1n<\/td>\nReceiver Inverted Data Output<\/td>\n<\/td>\n<\/tr>\n
    19<\/td>\n<\/td>\nGND<\/td>\nGround<\/td>\n1<\/td>\n<\/tr>\n
    20<\/td>\n<\/td>\nGND<\/td>\nGround<\/td>\n1<\/td>\n<\/tr>\n
    21<\/td>\nCML-O<\/td>\nRx2n<\/td>\nReceiver Inverted Data Output<\/td>\n<\/td>\n<\/tr>\n
    22<\/td>\nCML-O<\/td>\nRx2p<\/td>\nReceiver Non-Inverted Data Output<\/td>\n<\/td>\n<\/tr>\n
    23<\/td>\n<\/td>\nGND<\/td>\nGround<\/td>\n1<\/td>\n<\/tr>\n
    24<\/td>\nCML-O<\/td>\nRx4n<\/td>\nReceiver Inverted Data Output<\/td>\n1<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

    4<\/p>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
    25<\/td>\nCML-O<\/td>\nRx4p<\/td>\nReceiver Non-Inverted Data Output<\/td>\n<\/td>\n<\/tr>\n
    26<\/td>\n<\/td>\nGND<\/td>\nGround<\/td>\n1<\/td>\n<\/tr>\n
    27<\/td>\nLVTTL-O<\/td>\nModPrsL<\/td>\nModule Present<\/td>\n<\/td>\n<\/tr>\n
    28<\/td>\nLVTTL-O<\/td>\nIntL<\/td>\nInterrupt<\/td>\n<\/td>\n<\/tr>\n
    29<\/td>\n<\/td>\nVccTx<\/td>\n+3.3 V Power Supply transmitter<\/td>\n2<\/td>\n<\/tr>\n
    30<\/td>\n<\/td>\nVcc1<\/td>\n+3.3 V Power Supply<\/td>\n2<\/td>\n<\/tr>\n
    31<\/td>\nLVTTL-I<\/td>\nLPMode<\/td>\nLow Power Mode<\/td>\n<\/td>\n<\/tr>\n
    32<\/td>\n<\/td>\nGND<\/td>\nGround<\/td>\n1<\/td>\n<\/tr>\n
    33<\/td>\nCML-I<\/td>\nTx3p<\/td>\nTransmitter Non-Inverted Data Input<\/td>\n<\/td>\n<\/tr>\n
    34<\/td>\nCML-I<\/td>\nTx3n<\/td>\nTransmitter Inverted Data Output<\/td>\n<\/td>\n<\/tr>\n
    35<\/td>\n<\/td>\nGND<\/td>\nGround<\/td>\n1<\/td>\n<\/tr>\n
    36<\/td>\nCML-I<\/td>\nTx1p<\/td>\nTransmitter Non-Inverted Data Input<\/td>\n<\/td>\n<\/tr>\n
    37<\/td>\nCML-I<\/td>\nTx1n<\/td>\nTransmitter Inverted Data Output<\/td>\n<\/td>\n<\/tr>\n
    38<\/td>\n<\/td>\nGND<\/td>\nGround<\/td>\n1<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

    Notes:<\/p>\n

      \n
    1. Module circuit ground is isolated from module chassis ground within the module. GND is the symbol for signal and supply (power) common for QSFP modules.<\/li>\n
    2. The connector pins are each rated for a maximum current of 500mA.<\/li>\n<\/ol>\n

      ModSelL Pin
      \nThe ModSelL is an input pin. When held low by the host, the module responds to<\/p>\n

      2-wire serial communication commands. The ModSelL allows the use of multiple QSFP<\/p>\n

      5<\/p>\n

      modules on a single 2-wire interface bus. When the ModSelL is \u201cHigh\u201d, the module will not respond to any 2-wire interface communication from the host. ModSelL has an internal pull-up in the module.
      \nResetL Pin
      \nReset. LPMode_Reset has an internal pull-up in the module. A low level on the ResetL pin for longer than the minimum pulse length (t_Reset_init) initiates a complete module reset, returning all user module settings to their default state. Module Reset Assert Time (t_init) starts on the rising edge after the low level on the ResetL pin is released. During the execution of a reset (t_init) the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by posting an IntL signal with the Data_Not_Ready bit negated. Note that on power up (including hot insertion) the module will post this completion of reset interrupt without requiring a reset.
      \nLPMode Pin
      \nHuihongfiber QSFP28 SR4 operate in the low power mode (less than 1.5 W power consumption) This pin active high will decrease power consumption to less than 1W.
      \nModPrsL Pin
      \nModPrsL is pulled up to Vcc on the host board and grounded in the module. The ModPrsL is asserted \u201cLow\u201d when the module is inserted and deasserted \u201cHigh\u201d when the module is physically absent from the host connector.
      \nIntL Pin
      \nIntL is an output pin. When \u201cLow\u201d, it indicates a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt by using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled up to Vcc on the host board.
      \nPower Supply Filtering
      \nThe host board should use the power supply filtering shown in Figure 1.<\/p>\n

      6<\/p>\n

      Figure1. Host Board Power Supply Filtering
      \nOptical Interface Lanes and Assignment
      \nThe optical interface port is a male MPO connector .The four fiber positions on the left as shown in Figure 2, with the key up, are used for the optical transmit signals (Channel 1 through4). The fiber positions on the right are used for the optical receive signals (Channel 4 through 1). The central four fibers are physically present.<\/p>\n

      Figure 2. Optical Receptacle and Channel Orientation
      \nDiagnostic Monitoring Interface
      \nDigital diagnostics monitoring function is available on all HUIHONGFIBER QSFP28 SR4. A 2-wire serial interface provides user to contact with module. The structure of the memory is shown in Figure 3. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure<\/p>\n

      7<\/p>\n

      permits timely access to addresses in the lower page, such as Interrupt Flags and Monitors. Less time critical time entries, such as serial ID information and threshold settings, are available with the Page Select function. The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a one-time-read for all data related to an interrupt situation. After an interrupt, IntL, has been asserted, the host can read out the flag field to determine the affected channel and type of flag.<\/p>\n\n\n\n\n\n\n\n
      Parameter<\/td>\nSymbol<\/td>\nMin.<\/td>\nMax<\/td>\nUnit<\/td>\nNotes<\/td>\n<\/tr>\n
      Temperature monitor absolute error<\/td>\nDMI_Temp<\/td>\n-3<\/td>\n+3<\/td>\ndegC<\/td>\nOver operating temp<\/td>\n<\/tr>\n
      Supply voltage monitor absolute error<\/td>\nDMI _VCC<\/td>\n-0.1<\/td>\n0.1<\/td>\nV<\/td>\nFull operating range<\/td>\n<\/tr>\n
      Channel RX power monitor absolute error<\/td>\nDMI_RX<\/td>\n-3<\/td>\n3<\/td>\ndB<\/td>\nPer channel<\/td>\n<\/tr>\n
      Channel Bias current monitor<\/td>\nDMI_Ibias<\/td>\n-10%<\/td>\n10%<\/td>\nmA<\/td>\nPer channel<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

      Figure 3<\/p>\n

      EEPROM Serial ID Memory Contents:<\/p>\n

      Serial ID: Data Fields (Page 00)<\/p>\n\n\n\n\n\n\n\n\n\n\n\n\n
      Address<\/td>\nSize<\/p>\n

      (Bytes)<\/td>\n

      Name<\/td>\nDescription of Base ID<\/p>\n

      Field<\/td>\n

      Optical<\/p>\n

      Module<\/td>\n<\/tr>\n

      128<\/td>\n1<\/td>\nIdentifier<\/td>\nIdentifier Type of serial Module<\/td>\nR<\/td>\n<\/tr>\n
      129<\/td>\n1<\/td>\nExt.<\/p>\n

      Identifier<\/td>\n

      Extended Identifier of Serial Module<\/td>\nR<\/td>\n<\/tr>\n
      130<\/td>\n1<\/td>\nConnector<\/td>\nCode for connector type<\/td>\nR<\/td>\n<\/tr>\n
      131-138<\/td>\n8<\/td>\nSpecification compliance<\/td>\nCode for electronic compatibility or optical compatibility<\/td>\nR<\/td>\n<\/tr>\n
      139<\/td>\n1<\/td>\nEncoding<\/td>\nCode for serial encoding algorithm<\/td>\nR<\/td>\n<\/tr>\n
      140<\/td>\n1<\/td>\nBR, nominal<\/td>\nNominal bit rate, units of 100 MBits\/s<\/td>\nR<\/td>\n<\/tr>\n
      141<\/td>\n1<\/td>\nExtended rateselect Compliance<\/td>\nTags for extended rate select compliance<\/td>\nR<\/td>\n<\/tr>\n
      142<\/td>\n1<\/td>\nLength(SMF)<\/td>\nLink length supported for SMF fiber in km (note 1)<\/td>\nR<\/td>\n<\/tr>\n
      143<\/td>\n1<\/td>\nLength(OM3 50 um)<\/td>\nLink length supported for EBW 50\/125 um fiber (OM3), units of 2m (note 1)<\/td>\nR<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

      8<\/p>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
      144<\/td>\n1<\/td>\nLength(OM2 50 um)<\/td>\nLink length supported for 50\/125 um fiber (OM2), units of 1m (note 1)<\/td>\nR<\/td>\n<\/tr>\n
      145<\/td>\n1<\/td>\nLength(OM1<\/p>\n

      62.5 um)<\/td>\n

      Link length 62.5\/125 um units of 1m<\/td>\nsupported for fiber (OM1), (note 1)<\/td>\nR<\/td>\n<\/tr>\n
      146<\/td>\n1<\/td>\nLength (Copper)<\/td>\nLink length of copper or active cable, units of 1 m (note 1)Link length supported for 50\/125 um fiber (OM4), units of 2 m) when Byte 147 declares 850 nm VCSEL as defined in<\/p>\n

      Table 37<\/td>\n

      R<\/td>\n<\/tr>\n
      147<\/td>\n1<\/td>\nDevice tech<\/td>\nDevice technology<\/td>\nR<\/td>\n<\/tr>\n
      148-163<\/td>\n16<\/td>\nVendor name<\/td>\nQSFP28 vendor name(ASCII)<\/td>\nR<\/td>\n<\/tr>\n
      164<\/td>\n1<\/td>\nExtended Module<\/td>\nExtended Module codes for InfiniBand<\/td>\nR<\/td>\n<\/tr>\n
      165-167<\/td>\n3<\/td>\nVendor OUI<\/td>\nQSFP28 vendor IEEE company ID<\/td>\nR<\/td>\n<\/tr>\n
      168-183<\/td>\n16<\/td>\nHuihongfiber PN<\/td>\nPart number provided by QSFP28 vendor(ASCII)<\/td>\nR<\/td>\n<\/tr>\n
      184-185<\/td>\n2<\/td>\nVendor rev<\/td>\nRevision level for part number provided by vendor(ASCII)<\/td>\nR<\/td>\n<\/tr>\n
      186-187<\/td>\n2<\/td>\nWave length or Copper cable Attenuation<\/td>\nNominal laser wavelength (wavelength=value\/20 in nm) or copper cable attenuation in dB at 2.5GHz (Adrs 186)and<\/p>\n

      5.0GHz (Adrs 187)<\/td>\n

      R<\/td>\n<\/tr>\n
      188-189<\/td>\n2<\/td>\nWavelength tolerance<\/td>\nGuaranteed range of laser wavelength(+\/- value) from<\/p>\n

      nominal<\/p>\n

      wavelength.(wavelength Tol.=value\/200 in nm)<\/td>\n

      R<\/td>\n<\/tr>\n
      190<\/td>\n1<\/td>\nMax case temp.<\/td>\nMaximum case temperature in degrees C<\/td>\nR<\/td>\n<\/tr>\n
      191<\/td>\n1<\/td>\nCC_BASE<\/td>\nCheck code for base ID fields (addresses 128-190)<\/td>\nR<\/td>\n<\/tr>\n
      192-195<\/td>\n4<\/td>\nOptions<\/td>\nRate Select, TX Disable, TX Fault, LOS, Warning indicators for: Temperature, VCC, RX power, TX Bias<\/td>\nR<\/td>\n<\/tr>\n
      196-211<\/td>\n16<\/td>\nVendor SN<\/td>\nSerial number provided by vendor (ASCII)<\/td>\nR<\/td>\n<\/tr>\n
      212-219<\/td>\n8<\/td>\nDate Code<\/td>\nVendor\u2019s manufacturing date code<\/td>\nR<\/td>\n<\/tr>\n
      220<\/td>\n1<\/td>\nDiagnostic<\/p>\n

      Monitoring<\/p>\n

      Type<\/td>\n

      Indicates which types of diagnostic monitoring are implemented (if any) in the Module. Bit 1,0<\/p>\n

      Reserved<\/td>\n

      R<\/td>\n<\/tr>\n
      221<\/td>\n1<\/td>\nEnhanced Options<\/td>\nIndicates which optional enhanced features are implemented in the Module.<\/td>\nR<\/td>\n<\/tr>\n
      222<\/td>\n1<\/td>\nReserved<\/td>\n<\/tr>\n
      <\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

      9<\/p>\n\n\n\n\n\n
      223<\/td>\n1<\/td>\nCC_EXT<\/td>\nCheck code for the Extended ID Fields<\/p>\n

      (addresses 192-222)<\/td>\n

      R<\/td>\n<\/tr>\n
      Vendor Specific ID Fields<\/td>\n<\/td>\n<\/td>\n<\/tr>\n
      224-255 32\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 Vendor Specific EEPROM<\/td>\n<\/td>\n<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

      Mechanical Dimensions
      \nESD
      \nThis transceiver is specified as ESD threshold 1KV for high speed data pins and 2KV for all others\u00a0\u00a0\u00a0 electrical\u00a0\u00a0\u00a0\u00a0\u00a0 input\u00a0\u00a0\u00a0\u00a0\u00a0 pins,\u00a0\u00a0\u00a0\u00a0\u00a0 tested\u00a0\u00a0\u00a0 per\u00a0\u00a0\u00a0\u00a0\u00a0\u00a0 MIL-STD-883,\u00a0\u00a0\u00a0\u00a0\u00a0 Method 3015.4 \/JESD22-A114-A (HBM).\u00a0\u00a0\u00a0\u00a0 However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.
      \nLaser Safety
      \nThis is a Class 1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007)[\/vc_column_text][\/vc_column][\/vc_row]<\/p>\n<\/div>","protected":false},"excerpt":{"rendered":"

      [vc_row type=”container” padding_top=”” padding_bottom=”” css=”.vc_custom_1445094705330{margin-bottom: 0px !important;}”][vc_column width=”1\/2″ css=”.vc_custom_1444994576899{margin-bottom: 35px !important;}”][vc_column_text]The 100G-QSFP28-SR4 is a Four-Channel, Pluggable, Parallel, Fiber-Optic QSFP28 Transceiver for IEEE 802.3bm, 100GBASE SR4 Applications,or 40 Gigabit Ethernet and Infiniband FDR\/EDR Applications. The QSFP28 full-duplex optical module offers 4 independent transmit and receive channels, each capable of 26Gbps operation for an aggregate data rate […]<\/p>\n","protected":false},"author":1,"featured_media":0,"parent":0,"menu_order":0,"comment_status":"closed","ping_status":"closed","template":"page-full-width.php","meta":{"_acf_changed":false,"footnotes":""},"acf":[],"yoast_head":"\n100G QSFP28 SR4 - HUIHONG TECHNOLOGIES<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"100G QSFP28 SR4 - HUIHONG TECHNOLOGIES\" \/>\n<meta property=\"og:description\" content=\"[vc_row type=”container” padding_top=”” padding_bottom=”” css=”.vc_custom_1445094705330{margin-bottom: 0px !important;}”][vc_column width=”1\/2″ css=”.vc_custom_1444994576899{margin-bottom: 35px !important;}”][vc_column_text]The 100G-QSFP28-SR4 is a Four-Channel, Pluggable, Parallel, Fiber-Optic QSFP28 Transceiver for IEEE 802.3bm, 100GBASE SR4 Applications,or 40 Gigabit Ethernet and Infiniband FDR\/EDR Applications. The QSFP28 full-duplex optical module offers 4 independent transmit and receive channels, each capable of 26Gbps operation for an aggregate data rate […]\" \/>\n<meta property=\"og:url\" content=\"https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html\" \/>\n<meta property=\"og:site_name\" content=\"HUIHONG TECHNOLOGIES\" \/>\n<meta property=\"article:modified_time\" content=\"2021-11-05T00:29:31+00:00\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:label1\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data1\" content=\"10 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"WebPage\",\"@id\":\"https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html\",\"url\":\"https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html\",\"name\":\"100G QSFP28 SR4 - HUIHONG TECHNOLOGIES\",\"isPartOf\":{\"@id\":\"https:\/\/www.mpofibercable.com\/#website\"},\"datePublished\":\"2017-12-28T02:53:28+00:00\",\"dateModified\":\"2021-11-05T00:29:31+00:00\",\"breadcrumb\":{\"@id\":\"https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/www.mpofibercable.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"100G QSFP28 SR4\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/www.mpofibercable.com\/#website\",\"url\":\"https:\/\/www.mpofibercable.com\/\",\"name\":\"HUIHONG TECHNOLOGIES\",\"description\":\"\",\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/www.mpofibercable.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"100G QSFP28 SR4 - HUIHONG TECHNOLOGIES","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html","og_locale":"en_US","og_type":"article","og_title":"100G QSFP28 SR4 - HUIHONG TECHNOLOGIES","og_description":"[vc_row type=”container” padding_top=”” padding_bottom=”” css=”.vc_custom_1445094705330{margin-bottom: 0px !important;}”][vc_column width=”1\/2″ css=”.vc_custom_1444994576899{margin-bottom: 35px !important;}”][vc_column_text]The 100G-QSFP28-SR4 is a Four-Channel, Pluggable, Parallel, Fiber-Optic QSFP28 Transceiver for IEEE 802.3bm, 100GBASE SR4 Applications,or 40 Gigabit Ethernet and Infiniband FDR\/EDR Applications. The QSFP28 full-duplex optical module offers 4 independent transmit and receive channels, each capable of 26Gbps operation for an aggregate data rate […]","og_url":"https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html","og_site_name":"HUIHONG TECHNOLOGIES","article_modified_time":"2021-11-05T00:29:31+00:00","twitter_card":"summary_large_image","twitter_misc":{"Est. reading time":"10 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"WebPage","@id":"https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html","url":"https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html","name":"100G QSFP28 SR4 - HUIHONG TECHNOLOGIES","isPartOf":{"@id":"https:\/\/www.mpofibercable.com\/#website"},"datePublished":"2017-12-28T02:53:28+00:00","dateModified":"2021-11-05T00:29:31+00:00","breadcrumb":{"@id":"https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/www.mpofibercable.com\/100g-qsfp28-sr4.html#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/www.mpofibercable.com\/"},{"@type":"ListItem","position":2,"name":"100G QSFP28 SR4"}]},{"@type":"WebSite","@id":"https:\/\/www.mpofibercable.com\/#website","url":"https:\/\/www.mpofibercable.com\/","name":"HUIHONG TECHNOLOGIES","description":"","potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/www.mpofibercable.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"}]}},"_links":{"self":[{"href":"https:\/\/www.mpofibercable.com\/wp-json\/wp\/v2\/pages\/72087"}],"collection":[{"href":"https:\/\/www.mpofibercable.com\/wp-json\/wp\/v2\/pages"}],"about":[{"href":"https:\/\/www.mpofibercable.com\/wp-json\/wp\/v2\/types\/page"}],"author":[{"embeddable":true,"href":"https:\/\/www.mpofibercable.com\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/www.mpofibercable.com\/wp-json\/wp\/v2\/comments?post=72087"}],"version-history":[{"count":0,"href":"https:\/\/www.mpofibercable.com\/wp-json\/wp\/v2\/pages\/72087\/revisions"}],"wp:attachment":[{"href":"https:\/\/www.mpofibercable.com\/wp-json\/wp\/v2\/media?parent=72087"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}